Evaluating regional blood spinal cord barrier dysfunction following spinal cord injury using longitudinal dynamic contrast-enhanced MRI

نویسندگان

  • Ilkan Tatar
  • Peter C. Chou
  • Mohamed Desouki
  • Hanaa El Sayed
  • Mehmet Bilgen
چکیده

BACKGROUND In vivo preclinical imaging of spinal cord injury (SCI) in rodent models provides clinically relevant information in translational research. This paper uses multimodal magnetic resonance imaging (MRI) to investigate neurovascular pathology and changes in blood spinal cord barrier (BSCB) permeability following SCI in a mouse model of SCI. METHODS C57BL/6 female mice (n = 5) were subjected to contusive injury at the thoracic T11 level and scanned on post injury days 1 and 3 using anatomical, dynamic contrast-enhanced (DCE-MRI) and diffusion tensor imaging (DTI). The injured cords were evaluated postmortem with histopathological stains specific to neurovascular changes. A computational model was implemented to map local changes in barrier function from the contrast enhancement. The area and volume of spinal cord tissue with dysfunctional barrier were determined using semi-automatic segmentation. RESULTS Quantitative maps derived from the acquired DCE-MRI data depicted the degree of BSCB permeability variations in injured spinal cords. At the injury sites, the damaged barriers occupied about 70% of the total cross section and 48% of the total volume on day 1, but the corresponding measurements were reduced to 55% and 25%, respectively on day 3. These changes implied spatio-temporal remodeling of microvasculature and its architecture in injured SC. Diffusion computations included longitudinal and transverse diffusivities and fractional anisotropy index. Comparison of permeability and diffusion measurements indicated regions of injured cords with dysfunctional barriers had structural changes in the form of greater axonal loss and demyelination, as supported by histopathologic assessments. CONCLUSION The results from this study collectively demonstrated the feasibility of quantitatively mapping regional BSCB dysfunction in injured cord in mouse and obtaining complementary information about its structural integrity using in vivo DCE-MRI and DTI protocols. This capability is expected to play an important role in characterizing the neurovascular changes and reorganization following SCI in longitudinal preclinical experiments, but with potential clinical implications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Angiopoietin-1 Reduces Blood-Spinal Cord Barrier Permeability and Lesion Volume in the Acute Phase of Spinal Cord Injury: MRI and Histological Studies

Introduction Following mechanical trauma to spinal cord, a series of pathobiological events ensue leading to the so-called “secondary injury”. Blood-spinal cord barrier (BSCB) breakdown is an important secondary effect following mechanical trauma to the spinal cord. Traditionally, the BSCB permeability has been assessed ex vivo, using histological techniques [1]. However, noninvasive in vivo te...

متن کامل

Blood-Spinal Cord Barrier Permeability in Experimental Spinal Cord Injury: Dynamic Contrast-Enhanced Magnetic Resonance Imaging

Following the primary traumatic injury, spinal cord tissue undergoes a series of pathobiological changes, including compromised blood-spinal cord-barrier (BSCB) integrity. These vascular changes occur over both time and space. In an experimental model of spinal cord injury (SCI), longitudinal dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)studies were performed up to 56 days post...

متن کامل

Vascular Stabilization with Angiopoitin-1 Improves Outcome in Experimental Spinal Cord Injury

The effect of angiopoitin-1 (Ang-1) and adeno-associated virus (AAV) engineered to express Ang-1 on experimental spinal cord injury (SCI) was investigated using longitudinal in vivo MRI, including dynamic contrast enhanced MRI, and neurobehavioral studies. In treated animals, on MRI, improvement in the blood-spinal cord barrier (BSCB) integrity and reduced lesion volume were observed compared t...

متن کامل

Effect of VEGF treatment on the blood-spinal cord barrier permeability in experimental spinal cord injury: dynamic contrast-enhanced magnetic resonance imaging.

Compromised blood-spinal cord barrier (BSCB) is a factor in the outcome following traumatic spinal cord injury (SCI). Vascular endothelial growth factor (VEGF) is a potent stimulator of angiogenesis and vascular permeability. The role of VEGF in SCI is controversial. Relatively little is known about the spatial and temporal changes in the BSCB permeability following administration of VEGF in ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2009